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Properties of the class of power-logistic maps
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In a study of the class of power-logistic maps, each of which consists of a power-law bram¢k,[Z for
negative values ok, and a quadraticlogistic) branch 1- rxﬁ for positive values ofx,, with parameter
r €(0,2] and exponente (0,2], we found the following:(i) In the chaotic region, there are stable cycles
whose periods can be regarded to form an arithmetic progression known as paten (i) As z decreases,
PA is more prominent; nevertheless, it still exists in the logistic niép.The first term of PA is a function of
z: asz decreases, it either stays constant or increases kiy)2As z decreases, a given PA term begins to
appear at a smallervalue.(v) Whenz is sufficiently large, the range of a PA term increaseg dscreases.
(vi) Between two consecutive PA terms, there are structures such as period-doubled cycles of the PA terms,
other stable cycles, and a chaotic subregioi) As z decreases, the chaotic subregion between any two
consecutive PA terms shrinks, which may result in a loss of fine struc{iB&663-651X%96)12511-3

PACS numbdss): 05.45+b

[. INTRODUCTION range(0,2] and withr over its complete range. Thus for each
selected value of, we can determine the range pfover
Recently, there has been much interest in the study ofvhich the orbits have period, Ar(n), which is equal to
discontinuous maps, consisting of piecewise continuous sec¢{n, max)-r(n,min) wherer(n,max) andr(n,min) denote,
tions, as they have many interesting properties such as thespectively, the maximum and minimum values rofat
existence of a renormalization group with periodic behaviowhich the map has an cycle.
[1], the existence of fine structures, precision-dependent pe- An outline of this paper is as follows: The existence and
riods, and summation rules governing the inverse cascadgsoperties of patter\, which is an arithmetic progression
[2-5]; they can also be used for modeling some physicalvhose terms are the periods of certain stable cycles in the
systemd6,7]. chaotic region of the map with a given value ofwill be
Do other asymmetric unimodal maps with two different presented in Sec. Il. The variation of some other properties
branches also have interesting fine structures, and if they def this map withz will be given in Sec. Ill. The next section
how dependent are their properties on the details of theill include a discussion on the existence of pattérPA)
maps? To answer these questions, we shall study the follown the logistic map. Finally, a brief summary and discussion
ing class of one-dimensional unimodal exponent-asymmetrigiill be presented in Sec. V.
maps:
i Il. EXISTENCE AND PROPERTIES OF PATTERN A
1-r|x,* if x,<O
g(Xp) = 1-1x2 it x,=0, (1) A. Existence of pattern A
For the power-logistic map with a given value nf the
which has a “logistic” branch and a “power-law” branch, nature of the orbits as a function of can be determined
with exponentze (0,2] and parametere (0,2], for the pres-  numerically. This information is summarized in the bifurca-
ence of fine structures and their dependence.on tion diagram, a typical one being shown in Fig. 1 for
This map, to be known as the power-logistic map, reduceg=0.8. From such a bifurcation diagram and the graph of the
to the logistic map whez=2 and to the linear-logistic map Lyapunov exponenk as a function of the parameterfor a
whenz=1 [8]. Further, wherz=2, the power-logistic map given value ofz, we are able to distinguish some stable
is aC* function, while for 1<z<2, it is aC? function, but  cycles in the chaotic region. These have special features in
for z<1, the slope is not continuous x¢=0. Thus this map the A-r graph, namely, a smoothly ascending structure that
is interesting in its own right and it can be used to study theises from a negative value of to a peak value of 0. It is
effect of introducing a discontinuity in the slope at the maxi-found that the periods of these stable cycles form an arith-
mum. Moreover, the power-logistic map has some physicainetic progression. For example, in ther graph with
relevance since a special case of it, namely, the linearz=0.4 shown in Fig. £a), the third and subsequent labeled
logistic map, can be used for modeling some dynamical syseycles, which lie in the chaotic region, have the respective
tems such as the impact oscillatt®] and the electronic periods 8,10,12,14,. ., which form an arithmetic progres-
forced oscillatof10]. sion; each term is associated with a smoothly ascending
In this paper, we shall report our numerical study of thestructure that rises from a negative value\ab a peak value
behavior of the mam(x) with selected values aof in the  of 0. We shall refer to the members of this arithmetic pro-
gression as “terms.”
The first two labeled periodic orbits in the above figure,
*Fax: 65-7776126. Electronic address: phyctt@nus.sg namely, the 2 cycle and the 6 cycle are located within the
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FIG. 1. Bifurcation diagram of the power-
logistic map withz=0.8.

periodic region; the chaotic region that lies just before the eak at\ =0 is the period-doubled cycle of the periodic orbit
cycle, is barely visible here. Though the 6 cycle has the samassociated with the ascending structure to the left of that

rising structure, it is not regarded as part of the same serigseak.

since this cycle lies in the periodic region. Further, the cycle As other examples of the special structure associated with
associated with the descending region to the right of eacthese terms, and their membership of an arithmetic progres-
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FIG. 2. Graph of Lyapunov exponehitagainst parametar for the power-logistic map witlia) z=0.4, (b) z=0.5, (c) z=0.8, and(d)
z=1.0. The periods of the 2 cycle, thiecycle, and the earlier PA terms are labeled in order of increasing



54 PROPERTIES OF THE CLASS OF POWER-LOGISTIC MAPS 5987

FIG. 3. Bifurcation diagram of the power-
logistic map withz=0.4.

sion, we refer the reader to Figs(b?-2(d), which are the In the chaotic region, the first few PA terms, namely, the
\-r graphs for the power-logistic maps wit+0.5,z=0.8, 8, 10, 12, and 14 cycles, are easily found as they occupy
andz=1.0, respectively. Remarks similar to those made foffairly large ranges of. These are shown in Fig. 3 with each
Fig. 2a) are also applicable to Figs(l8—2(d). In these fig- lying between two consecutive chaotic subregions. Note that

ures, the earlier PA terms, that is, the terms at the beginnilg! this figure, the first chaotic subregion that lies at the be-

: ) inning of the chaotic region is not visible.
of the series, are clearly marked; however, the later P ; . .
terms, namely, the othery PA terms, are not visible in the Each of the PA terms gives rise to period-doubled c_ycles
above, bifurcai/i’on diagram andr graths just as the 6 cycle in the periodic region does. Hence, in the

. ) . . chaotic region there is an intermingling of the PA terms with
For a given value o, this series, which lies in the cha- heir period-doubled cycles and chaotic subregions. For this

otic region, is an arithmetic progression where the first tery55e “the first PA terms with their associated period-doubled
is an integer and the common difference is 2. Between tW@ycles are 816,32, ... chaos: 10,2040, ... chaos,

consecutive terms, there are small chaotic subregions angh 24 48 ... chaos, where the PA terms are italicized.

periodic windows containing other cycles including the  There appear to be no other stable periodic orbits between
period-doubled cycles of the term with smalter=or conve-  these period-doubled cycles. However, other stable periodic
nience, we shall refer to this series pattern Aor PA for  orbits may appear in the chaotic subregion that lies between
short, and denote it by P&|, which represents the end of each period-doubling sequence and the beginning

P{,P5,P3, ..., whereP;,,=P;+2 andP; is an integer of the next PA term.
that is a function ofz. The value ofP; is also equal to
2+ P, whereP is the period of the cycle in the periodic C. Pattern A for some other values ofz

region, which begins to appear at the end of the 2 cycle; we
shall refer to this periodic orbit as the cycle, with P being
clearly a function ofz. For example, forz=0.4,0.5,0.8,1.0,
the period of theP cycle is equal to 6,6,4,4, respectively, as
can be seen in Figs.(@—2(d) where theP cycle is the
second labeled cycle in each figure.

Since both PA and its first terf; are functions of, the
appearance of the bifurcation diagram zsdependent, as
shown in the bifurcation diagrams given in Figs. 1, 3, 4, and
5 for z=0.8, 0.4, 0.6, and 0.2, respectively. These diagrams
show that the PA terms become less prominentzas-
creases.

The bifurcation diagram for= 0.8 given in Fig. 1 shows
thatP=4 in the periodic region, which implies that the first

In order to have a better understanding of the distributiorPA term has a period of 6. This term and the succeeding PA
of the stable cycles including the PA terms in parameteterms, 8,10, ... can be identified in enlargements of Fig. 1.
space, we shall consider the special case of the power- For the case when= 0.6, the PA terms 6, 8, 10, and 12 as
logistic map withz=0.4. In the periodic region of this par- well as their first period-doubled cycles are shown in Figs.
ticular map, as increases, we can identify stable cycles with4(a)—4(b). Here, the prominent periodic orbits are
periods 1,2,6,12,24,28, .. Here 6 is the period of th@ 1,26,12,...,8,16,...,10,20,...,1224,. .., where the
cycle while 12,24,48, ... are the periods of its period-italicized integers are the periods of the PA terms; the others
doubled cycles. On the scale of the bifurcation diagramare those of the period-doubled cycles of these PA terms.
given in Fig. 3 for this case, other than the 1 and 2 cycles, th&he P cycle, which has a period of 4 and which lies at the
other stable periodic orbits in the periodic region are notend of the 2 cycle, is not shown in Fig(a} as its range is
visible. very narrow.

B. Distribution of stable cycles and patternA for z=0.4
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FIG. 4. (a) Bifurcation diagram of the power-
logistic map withz=0.6. (b) Enlargement of part
of the diagram in(a).

In the bifurcation diagram foz=0.4 shown in Fig. 3, cending structures. Between the end of a PA term,Bay
each of the PA terms 8,10,12 and their respective periodand the beginning of the next PA termR;, ,, is a chaotic
doubled cycles occupies quite a large range. The prominerjubregion, to be denoted I, in which there are period-
stable orbits are 1,8,16,..., 1020,..., 1224, ... with  doubled cycles and other periodic orbits intermingled with
the same convention used above. Theycle, which has a chaos. Some of these chaotic subregions are labeled in Figs.
period of 6 and which lies at the end of the 2 cycle, is noty(p)—2(q).
visible in Fig. 3 as it occupies a very tiny interval iof

In the case oz=0.2, as each of the earlier PA term as

well as its period-doubled cycle occupies a fairly large range, A. Range of P
they are visible in Fig. 5. The prominent cycles are
1’2,)/10'20“ 1224 g . 14,28?. o 16,3)2/,. o From the\-r graphs for different values of, say from

1836, ... with the previous convention. As in the other0-4 10 1, we observe thair(P) increases witte, where
cases, theP cycle, which has a period of 8 and which is Ar(P) is defined to b_e the range pf tHie_cycIe that occurs
located at the end of the 2 cycle, is not visible in this figure JUSt after the 2 cycle in the periodic region. For example, as
z increases from 0.4Fig. 2@)] to 0.5 [Fig. 2(b)], Ar(P)
increases wher® is equal to 6. Wherz has increased to
0.516, a new 4 cycle appears between the 2 cycle and the 6
cycle. Hence forz<0.516, the 2 cycle is followed by a 6

In the\-r graphs shown in Figs.(2)—2(d), the earlier PA  cycle whereas foz>0.516, there is an additional 4 cycle,
terms are labeled and distinguished by their smoothly aswhich is now the newP cycle.

Ill. VARIATION OF PROPERTIES
OF MAPS WITH z
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FIG. 5. Bifurcation diagram of the power-
logistic map withz=0.2.
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8,16,24,32,40, . ... This new arithmetic progression has a

that of the 6 cycle may not continue to increase monotonicommon difference of 8 and it is located before PA.

cally as can be seen from FigsicRand Zd), which corre-

sponds taz=0.8 and 1.0, respectively. Though the range of

D. Development of more features

the 4 cycle when it first appears is smaller than that of the 6

cycle, it subsequently becomes larger.

B. Size ofR;

For small values of, the separationir; between the PA
termsP; andP; . ; also increases with. This can be verified
by comparing Fig. @) for z=0.5 with Fig. Zd) for
z=1.0. In Fig. Zb), P=6 andR;, which separates the PA
terms 8 and 10, is equal to 0.0169 whitg, which separates
the PA terms 10 and 12 is 0.0165. In FigdR the PA terms
that are visible are 6 and 8 witR=4 and R;=0.0528,
which is larger tharR; of Fig. 2(b). However, not all the
R;’s will increase monotonically witlz wheni is larger.

An increase of the first fewR;’s together with that of
Ar(P) gives the impression that asincreases, these fea-
tures in the middle portion of the-r diagram are displaced
in the direction of increasing. Thus asz increases, the PA
termsP; ,P; . 1,P; >, ... for a constant begin to appear at
larger values of .

C. Existence of another pattern

We shall now consider the transition in ther diagram
asz increases from 0.8 to 1.0. As shown in Figs$c)2and
2(d), both the ranges of the PA terr®s andP, decrease but
R, increases such that the beginnings of both Fheand
P, windows occur latefi.e., at larger values of), where

As seen above, wheinis small, bothR; and Ar(P) in-
crease with increasing Further, we observe that wheris
small the range oP; decreases asincreases from a suffi-
ciently large value. Despite these opposing effects, we find
(Sec. Il B) that asz increases, the earlier portion of the
chaotic region is displaced in the direction of increasing
such that the PA terms begin to appear later. One effect of
this movement of the PA series in the direction of increasing
r is that more “room” at the beginning of the chaotic region
is made available to accommodate additional “earlier” PA
terms where becomes larger. This accounts for the creation
of the 4 cycle between the 2 cycle and the 6 cycle when
increases from 0.4 to 0.516ec. Il A). As another example,
when z increases from 0.4 to 0.Figs. 4a) and 2b)], the
PA series 10,12,14, ... becomes 8,10,12,14, ... with an
additional 8 cycle. Likewise, when has increased to 0.8, a
new term, namely 6, appears with the series becoming
6,8,10,12,14, . .. insteddFig. 2(c)].

Another consequence of the decrease of the rand® of
and the increases of botkr (P) andR; for smalli whenz
increases is that it is more difficult to identify the PA terms
for they could occupy smaller ranges than the other non-PA
terms especially whem becomes fairly large.

As seen in Sec. lll C, more fine structures such as another
arithmetical progression may develop agncreases. Thus,
the A-r graph as well as the bifurcation diagram will gener-

just beforeP, develops more fine structures asncreases.
This can be seen from Figs(d@ and Zc) and their enlarge-
ments: whenz=1.0, many more periodic orbits with

IV. EXISTENCE OF PA IN LOGISTIC MAP
AND OTHER FEATURES

smoothly ascending structures in the chaotic subregion be-

tweenP and P, can be identified than when=0.8. When

As seen in Secs. Il C and Il D, asincreases, the PA

z=1.0, it is observed that the periods of these new cycleserms occupy smaller ranges, which means that PA becomes
form another arithmetic progression, namely, the serie¢ess prominent. From grounds of continuity we expect that
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FIG. 6. Graph ofAr(n_) againstz. Curves | and Il represent FIG. 7. Graphs of (6,min), r (6,max),r(8,min), andr(8,max)
Ar(6) andAr(8), respectively. vs z. The solid curves in | and Il denotg(6,min) andr (8,min),
respectively, while the dashed curves in | and Il dendi&max)
PA should exist for all values afe (0,2]. To test this idea, andr(8,max), respectively.
we shall examine the dependence oAr(6) andAr(8),

which are the ranges of the 6-cycle and 8-cycle PA terms, ag shown in Fig. 7, the smallest values rq6,min) and

respectively. r(8,min) are both 1, while the smallest valuexfor which
the 8 cycle exists is smaller than that for the 6 cycle. From
A. Graphs of Ar(6) and Ar(8) this and the monotonic nature of these four functions, we can
deduce that ag decreases, the earlier PA terms will be

Ar(6) is a function ofz as shown in Fig. 6. Az in- . L . .
. . pushed in the direction of decreasinguntil some of them
creases frpm about 0.5 to about QAZ,(6) increases rapujly cease to exist as they are “pushed” out of the chaotic region.
to a maximum value of about 0.072. Subsequently, it de-

: The last deduction is consistent with the observation in Sec.
creases to a value of 0.005 aincreases to 2. The range of Il D that asz increases, there is more “room” at the begin-
the 8-cycle PA termAr(8), has asimilar dependence on . : ) ) 9
z: asz increases from about 0.3 to about 0.5, it increases t&'"9 .Of the Ch‘?Ot'C region to accommodate earlier PA terms.
a maximum of about 0.032 from which it decreases to about !t IS Convenient to view the above processzasecreases
0.001 whenz=2. It follows that forz in the above range, T0M 2 instead. Az decreasesir(6) andAr(8) increase
Ar(6) andAr(8) are continuous functions afand that the ~until z reaches about 0.7 and 0.5, respectively, while
earlier PA terms can be identified even for the logistic mag’ (6.min), r(6,max), r(8min), andr(8 max) all become
in which they occupy very t|ny ranges. smaller. This increase of the ranges and the earlier appear-

We believe that the ranges of the later PA terms are als@nce of the beginning and ending of both the 6 and 8 cycles
continuous functions of though it is impossible to numeri- imply that these terms encroach towards the periodic region
cally verify this for largei since for largez, their ranges are asz decreases from 2 to 0.7. In general, other PA terms are
of the order of 10No, whereNp, is the maximum number of expected to behave similarly. Consequentlyzatecreases,
significant figures available in the computation. Thus as thehe first PA term will be larger since the earlier terms would
earlier PA terms have finite rangeszt 2, it follows that at  have been “pushed” out of the chaotic region.
least the earlier terms of PA do exist in the logistic map, if
note the whole series. In fact, the existence of PA in the C. Relation between PA and period-adding series
logistic map has previously been repor{dd]. in cusp maps

Note that the steady decreases\af(6) andAr(8) from
their respective maximum with increasirrgare consistent
with the earlier observation in Sec. Ill D that whieis small
the range ofP; decreases as increases from a sufficiently
large value.

From above, we see that PA, while is an arithmetic pro-
gression with a common difference of 2, exists in the chaotic
region of the power-logistic map for all values bfin the
range of interest, regardless of whether or not the slope of the
map is continuous everywhere. This is to be contrasted with
the existence of the “period-adding” phenomenon in cusp
maps, which have discontinuous slopes at the clkps14.

The graphs of r(6,min), r(6,max¥, r(8,min), and This phenomenon gives rise to a sequence of attracting peri-
r(8,max) as functions ot for the power-logistic maps are odic orbits in the chaotic region, which forms an arithmetic
shown in Fig. 7, where(n,min) andr(n,max) denote, re- progression with a common difference of 1 instead.
spectively, the minimum and maximum values ofhen the Thus patterrA, which exists in the power-logistic map, is
n cycle exists. This figure shows that all these functions in-not identical to the period-adding series in the cusp maps,
crease monotonically witlz, a behavior that is consistent since the common difference is 2 in PA, and it does exist in
with the shift of the portion of the chaotic region with small maps which may or may not have continuous slopes every-
values ofr in the direction of increasing asz increases. where.

B. Beginning and endingr values of 6 and 8 cycles
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V. SUMMARY AND DISCUSSION different values oz are related to each other. In particular,

. . asz increases, the range of the chaotic region decreases, with
The power-logistic map given by EQ) for 2= (0.2] has the same PA term commencing at a larger valug @nd

many interesting properties. Here we shall briefly summarize . . .

' . L . occupying a smaller range whenmis sufficiently large. De-
some of our main results and give a brief discussion on Cer_ e the shrinking of the chaotic redion afcreases. there
tain other aspects. P 9 9 '

In the chaotic region of the power-logistic map for all is now more room at the beginning of the chaotic region to
: . accommodate earlier PA terms.

values ofz in the range of interest, there are some stable It is convenient to describe the variations of certain prop-

cycles, each distinguished by its smoothly ascending Struce_rties of the bifurcation diagram aglecreases. The ran 20?

ture from a negative value of to a peak value of 0, with 9 ' 9

periods that can be regarded to form an arithmetic progrest_he periodic region decreases while that of the chaotic region

) . U . Increases. Within the latter region, the size of the chaotic
sion. This series is referred to as pattérigPA), and it has a . . . i
. . . : subregion lying between any two consecutive PA terms de
common difference of 2 with the first PA tern®, either d ; . ,
remaining constant or increasing by 2 aslecreases. The CrEasSes while that of the PA term increases whés suffi-
value ofg ‘s laraer than that ofgtheystable cvole oc.currin ciently large. We can say that the chaotic region shifts into
after the 210 cle ?n the periodic reaion by 2 y 9Ythe periodic region such that the beginning of any PA win-
cy P 9 y e . dow occurs at a smaller value of and the earlier PA terms
Whenz is small, the PA terms are very prominent com-

pared to other cycles and are therefore easily identifiable. A€ squeezed out of existence. Hencezasecreases, the

. . ?;arlier PA terms as well as their period-doubled cycles may
Z increases, the range occupied by each PA term generalé/ease to exist: for example, wherr 0.6, patternA consists
decreases whenis large enough; it is therefore more diffi- ’ ' -

cult to identify the PA terms for large, especially in the of the 6,8,10, .. . cycles, whereas wheimas decreased to

case of the logistic map. In the latter case, the PA term0'5’ the'seric'es does not incIuQe the 6 qycle. Further, thg de-
occupy very tiny ranges .orf and are not as ’prominent as Trease in size of the chaptlc subregion may result in a

. . . radual disappearance of fine structures such as the series
many other stable cycles in the chaotic region: hence thg 16.24.32 40 which occurs in the chaotic region be-
existence of PA can be easily overlooked here. R

Is PA a finite or an infinite series? It is not possible to tween theP cycle and the first PA term wher=1.

answer this question by using numerical methods since the

later PA terms have very tiny ranges and hence cannot be

isolated even if they do exist. This work was supported in part by the National Univer-
The bifurcation diagrams for the power-logistic map for sity of Singapore.
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