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In a study of the class of power-logistic maps, each of which consists of a power-law branch 12r uxnuz for
negative values ofxn and a quadratic~logistic! branch 12rxn

2 for positive values ofxn with parameter
rP(0,2# and exponentzP(0,2#, we found the following:~i! In the chaotic region, there are stable cycles
whose periods can be regarded to form an arithmetic progression known as patternA ~PA!. ~ii ! As z decreases,
PA is more prominent; nevertheless, it still exists in the logistic map.~iii ! The first term of PA is a function of
z: as z decreases, it either stays constant or increases by 2.~iv! As z decreases, a given PA term begins to
appear at a smallerr value.~v! Whenz is sufficiently large, the range of a PA term increases asz decreases.
~vi! Between two consecutive PA terms, there are structures such as period-doubled cycles of the PA terms,
other stable cycles, and a chaotic subregion.~vii ! As z decreases, the chaotic subregion between any two
consecutive PA terms shrinks, which may result in a loss of fine structures.@S1063-651X~96!12511-3#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Recently, there has been much interest in the study of
discontinuous maps, consisting of piecewise continuous sec-
tions, as they have many interesting properties such as the
existence of a renormalization group with periodic behavior
@1#, the existence of fine structures, precision-dependent pe-
riods, and summation rules governing the inverse cascades
@2–5#; they can also be used for modeling some physical
systems@6,7#.

Do other asymmetric unimodal maps with two different
branches also have interesting fine structures, and if they do,
how dependent are their properties on the details of the
maps? To answer these questions, we shall study the follow-
ing class of one-dimensional unimodal exponent-asymmetric
maps:

g~xn!5H 12r uxnuz if xn,0

12rxn
2 if xn>0,

~1!

which has a ‘‘logistic’’ branch and a ‘‘power-law’’ branch,
with exponentzP(0,2# and parameterrP(0,2#, for the pres-
ence of fine structures and their dependence onz.

This map, to be known as the power-logistic map, reduces
to the logistic map whenz52 and to the linear-logistic map
whenz51 @8#. Further, whenz52, the power-logistic map
is aC` function, while for 1,z,2, it is aC1 function, but
for z<1, the slope is not continuous atx50. Thus this map
is interesting in its own right and it can be used to study the
effect of introducing a discontinuity in the slope at the maxi-
mum. Moreover, the power-logistic map has some physical
relevance since a special case of it, namely, the linear-
logistic map, can be used for modeling some dynamical sys-
tems such as the impact oscillator@9# and the electronic
forced oscillator@10#.

In this paper, we shall report our numerical study of the
behavior of the mapg(x) with selected values ofz in the

range~0,2# and withr over its complete range. Thus for each
selected value ofz, we can determine the range ofr over
which the orbits have periodn, Dr (n), which is equal to
r (n,max)2r(n,min) wherer (n,max) andr (n,min) denote,
respectively, the maximum and minimum values ofr at
which the map has ann cycle.

An outline of this paper is as follows: The existence and
properties of patternA, which is an arithmetic progression
whose terms are the periods of certain stable cycles in the
chaotic region of the map with a given value ofz, will be
presented in Sec. II. The variation of some other properties
of this map withz will be given in Sec. III. The next section
will include a discussion on the existence of patternA ~PA!
in the logistic map. Finally, a brief summary and discussion
will be presented in Sec. V.

II. EXISTENCE AND PROPERTIES OF PATTERN A

A. Existence of patternA

For the power-logistic map with a given value ofz, the
nature of the orbits as a function ofr can be determined
numerically. This information is summarized in the bifurca-
tion diagram, a typical one being shown in Fig. 1 for
z50.8. From such a bifurcation diagram and the graph of the
Lyapunov exponentl as a function of the parameterr for a
given value ofz, we are able to distinguish some stable
cycles in the chaotic region. These have special features in
the l-r graph, namely, a smoothly ascending structure that
rises from a negative value ofl to a peak value of 0. It is
found that the periods of these stable cycles form an arith-
metic progression. For example, in thel-r graph with
z50.4 shown in Fig. 2~a!, the third and subsequent labeled
cycles, which lie in the chaotic region, have the respective
periods 8,10,12,14,. . . , which form an arithmetic progres-
sion; each term is associated with a smoothly ascending
structure that rises from a negative value ofl to a peak value
of 0. We shall refer to the members of this arithmetic pro-
gression as ‘‘terms.’’

The first two labeled periodic orbits in the above figure,
namely, the 2 cycle and the 6 cycle are located within the*Fax: 65-7776126. Electronic address: phyctt@nus.sg
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periodic region; the chaotic region that lies just before the 8
cycle, is barely visible here. Though the 6 cycle has the same
rising structure, it is not regarded as part of the same series
since this cycle lies in the periodic region. Further, the cycle
associated with the descending region to the right of each

peak atl50 is the period-doubled cycle of the periodic orbit
associated with the ascending structure to the left of that
peak.

As other examples of the special structure associated with
these terms, and their membership of an arithmetic progres-

FIG. 1. Bifurcation diagram of the power-
logistic map withz50.8.

FIG. 2. Graph of Lyapunov exponentl against parameterr for the power-logistic map with~a! z50.4, ~b! z50.5, ~c! z50.8, and~d!
z51.0. The periods of the 2 cycle, theP cycle, and the earlier PA terms are labeled in order of increasingr .
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sion, we refer the reader to Figs. 2~b!–2~d!, which are the
l-r graphs for the power-logistic maps withz50.5, z50.8,
andz51.0, respectively. Remarks similar to those made for
Fig. 2~a! are also applicable to Figs. 2~b!–2~d!. In these fig-
ures, the earlier PA terms, that is, the terms at the beginning
of the series, are clearly marked; however, the later PA
terms, namely, the other PA terms, are not visible in the
above bifurcation diagram andl-r graphs.

For a given value ofz, this series, which lies in the cha-
otic region, is an arithmetic progression where the first term
is an integer and the common difference is 2. Between two
consecutive terms, there are small chaotic subregions and
periodic windows containing other cycles including the
period-doubled cycles of the term with smallerr . For conve-
nience, we shall refer to this series aspattern Aor PA for
short, and denote it by PA(z), which represents
P1 ,P2 ,P3 , . . . , wherePi115Pi12 andP1 is an integer
that is a function ofz. The value ofP1 is also equal to
21P, whereP is the period of the cycle in the periodic
region, which begins to appear at the end of the 2 cycle; we
shall refer to this periodic orbit as theP cycle, withP being
clearly a function ofz. For example, forz50.4,0.5,0.8,1.0,
the period of theP cycle is equal to 6,6,4,4, respectively, as
can be seen in Figs. 2~a!–2~d! where theP cycle is the
second labeled cycle in each figure.

B. Distribution of stable cycles and patternA for z50.4

In order to have a better understanding of the distribution
of the stable cycles including the PA terms in parameter
space, we shall consider the special case of the power-
logistic map withz50.4. In the periodic region of this par-
ticular map, asr increases, we can identify stable cycles with
periods 1,2,6,12,24,28,. . . . Here 6 is the period of theP
cycle while 12,24,48, . . . are the periods of its period-
doubled cycles. On the scale of the bifurcation diagram
given in Fig. 3 for this case, other than the 1 and 2 cycles, the
other stable periodic orbits in the periodic region are not
visible.

In the chaotic region, the first few PA terms, namely, the
8, 10, 12, and 14 cycles, are easily found as they occupy
fairly large ranges ofr . These are shown in Fig. 3 with each
lying between two consecutive chaotic subregions. Note that
in this figure, the first chaotic subregion that lies at the be-
ginning of the chaotic region is not visible.

Each of the PA terms gives rise to period-doubled cycles
just as the 6 cycle in the periodic region does. Hence, in the
chaotic region there is an intermingling of the PA terms with
their period-doubled cycles and chaotic subregions. For this
case, the first PA terms with their associated period-doubled
cycles are 8,16,32, . . . chaos; 10,20,40, . . . chaos,
12,24,48, . . . chaos, where the PA terms are italicized.

There appear to be no other stable periodic orbits between
these period-doubled cycles. However, other stable periodic
orbits may appear in the chaotic subregion that lies between
the end of each period-doubling sequence and the beginning
of the next PA term.

C. Pattern A for some other values ofz

Since both PA and its first termP1 are functions ofz, the
appearance of the bifurcation diagram isz dependent, as
shown in the bifurcation diagrams given in Figs. 1, 3, 4, and
5 for z50.8, 0.4, 0.6, and 0.2, respectively. These diagrams
show that the PA terms become less prominent asz in-
creases.

The bifurcation diagram forz50.8 given in Fig. 1 shows
thatP54 in the periodic region, which implies that the first
PA term has a period of 6. This term and the succeeding PA
terms, 8,10, . . . can be identified in enlargements of Fig. 1.

For the case whenz50.6, the PA terms 6, 8, 10, and 12 as
well as their first period-doubled cycles are shown in Figs.
4~a!–4~b!. Here, the prominent periodic orbits are
1,2,6,12, . . . , 8,16, . . . , 10,20, . . . , 12,24, . . . , where the
italicized integers are the periods of the PA terms; the others
are those of the period-doubled cycles of these PA terms.
The P cycle, which has a period of 4 and which lies at the
end of the 2 cycle, is not shown in Fig. 4~a! as its range is
very narrow.

FIG. 3. Bifurcation diagram of the power-
logistic map withz50.4.
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In the bifurcation diagram forz50.4 shown in Fig. 3,
each of the PA terms 8,10,12 and their respective period-
doubled cycles occupies quite a large range. The prominent
stable orbits are 1,2,8,16, . . . , 10,20, . . . , 12,24, . . . with
the same convention used above. TheP cycle, which has a
period of 6 and which lies at the end of the 2 cycle, is not
visible in Fig. 3 as it occupies a very tiny interval ofr .

In the case ofz50.2, as each of the earlier PA term as
well as its period-doubled cycle occupies a fairly large range,
they are visible in Fig. 5. The prominent cycles are
1,2,10,20, . . . , 12,24, . . . , 14,28, . . . , 16,32, . . . ,
18,36, . . . with the previous convention. As in the other
cases, theP cycle, which has a period of 8 and which is
located at the end of the 2 cycle, is not visible in this figure.

III. VARIATION OF PROPERTIES
OF MAPS WITH z

In thel-r graphs shown in Figs. 2~a!–2~d!, the earlier PA
terms are labeled and distinguished by their smoothly as-

cending structures. Between the end of a PA term, sayPi ,
and the beginning of the next PA term,Pi11, is a chaotic
subregion, to be denoted byRi , in which there are period-
doubled cycles and other periodic orbits intermingled with
chaos. Some of these chaotic subregions are labeled in Figs.
2~b!–2~d!.

A. Range ofP

From thel-r graphs for different values ofz, say from
0.4 to 1, we observe thatDr (P) increases withz, where
Dr (P) is defined to be the range of theP cycle that occurs
just after the 2 cycle in the periodic region. For example, as
z increases from 0.4@Fig. 2~a!# to 0.5 @Fig. 2~b!#, Dr (P)
increases whereP is equal to 6. Whenz has increased to
0.516, a new 4 cycle appears between the 2 cycle and the 6
cycle. Hence forz,0.516, the 2 cycle is followed by a 6
cycle whereas forz.0.516, there is an additional 4 cycle,
which is now the newP cycle.

FIG. 4. ~a! Bifurcation diagram of the power-
logistic map withz50.6. ~b! Enlargement of part
of the diagram in~a!.
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The range of the new 4 cycle also increases withz, while
that of the 6 cycle may not continue to increase monotoni-
cally as can be seen from Figs. 2~c! and 2~d!, which corre-
sponds toz50.8 and 1.0, respectively. Though the range of
the 4 cycle when it first appears is smaller than that of the 6
cycle, it subsequently becomes larger.

B. Size ofRi

For small values ofi , the separationRi between the PA
termsPi andPi11 also increases withz. This can be verified
by comparing Fig. 2~b! for z50.5 with Fig. 2~d! for
z51.0. In Fig. 2~b!, P56 andR1, which separates the PA
terms 8 and 10, is equal to 0.0169 whileR2, which separates
the PA terms 10 and 12 is 0.0165. In Fig. 2~d!, the PA terms
that are visible are 6 and 8 withP54 and R150.0528,
which is larger thanR1 of Fig. 2~b!. However, not all the
Ri ’s will increase monotonically withz when i is larger.

An increase of the first fewRi ’s together with that of
Dr (P) gives the impression that asz increases, these fea-
tures in the middle portion of thel-r diagram are displaced
in the direction of increasingr . Thus asz increases, the PA
termsPi ,Pi11 ,Pi12 , . . . for a constanti begin to appear at
larger values ofr .

C. Existence of another pattern

We shall now consider the transition in thel-r diagram
as z increases from 0.8 to 1.0. As shown in Figs. 2~c! and
2~d!, both the ranges of the PA termsP1 andP2 decrease but
R1 increases such that the beginnings of both theP1 and
P2 windows occur later~i.e., at larger values ofr ), where
P156 andP258. Moreover, the growing chaotic subregion
just beforeP1 develops more fine structures asz increases.
This can be seen from Figs. 2~d! and 2~c! and their enlarge-
ments: when z51.0, many more periodic orbits with
smoothly ascending structures in the chaotic subregion be-
tweenP andP1 can be identified than whenz50.8. When
z51.0, it is observed that the periods of these new cycles
form another arithmetic progression, namely, the series

8,16,24,32,40, . . . . This new arithmetic progression has a
common difference of 8 and it is located before PA.

D. Development of more features

As seen above, wheni is small, bothRi andDr (P) in-
crease with increasingz. Further, we observe that wheni is
small the range ofPi decreases asz increases from a suffi-
ciently large value. Despite these opposing effects, we find
~Sec. III B! that asz increases, the earlier portion of the
chaotic region is displaced in the direction of increasingr
such that the PA terms begin to appear later. One effect of
this movement of the PA series in the direction of increasing
r is that more ‘‘room’’ at the beginning of the chaotic region
is made available to accommodate additional ‘‘earlier’’ PA
terms whenz becomes larger. This accounts for the creation
of the 4 cycle between the 2 cycle and the 6 cycle whenz
increases from 0.4 to 0.516~Sec. III A!. As another example,
when z increases from 0.4 to 0.5@Figs. 2~a! and 2~b!#, the
PA series 10,12,14, . . . becomes 8,10,12,14, . . . with an
additional 8 cycle. Likewise, whenz has increased to 0.8, a
new term, namely 6, appears with the series becoming
6,8,10,12,14, . . . instead@Fig. 2~c!#.

Another consequence of the decrease of the range ofPi
and the increases of bothDr (P) andRi for small i whenz
increases is that it is more difficult to identify the PA terms
for they could occupy smaller ranges than the other non-PA
terms especially whenz becomes fairly large.

As seen in Sec. III C, more fine structures such as another
arithmetical progression may develop asz increases. Thus,
thel-r graph as well as the bifurcation diagram will gener-
ally have more complicated features whenz is large.

IV. EXISTENCE OF PA IN LOGISTIC MAP
AND OTHER FEATURES

As seen in Secs. II C and III D, asz increases, the PA
terms occupy smaller ranges, which means that PA becomes
less prominent. From grounds of continuity we expect that

FIG. 5. Bifurcation diagram of the power-
logistic map withz50.2.
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PA should exist for all values ofzP(0,2#. To test this idea,
we shall examine thez dependence ofDr (6) andDr (8),
which are the ranges of the 6-cycle and 8-cycle PA terms,
respectively.

A. Graphs of Dr „6… and Dr „8…

Dr (6) is a function ofz as shown in Fig. 6. Asz in-
creases from about 0.5 to about 0.7,Dr (6) increases rapidly
to a maximum value of about 0.072. Subsequently, it de-
creases to a value of 0.005 asz increases to 2. The range of
the 8-cycle PA term,Dr (8), has asimilar dependence on
z: asz increases from about 0.3 to about 0.5, it increases to
a maximum of about 0.032 from which it decreases to about
0.001 whenz52. It follows that forz in the above range,
Dr (6) andDr (8) are continuous functions ofz and that the
earlier PA terms can be identified even for the logistic map
in which they occupy very tiny ranges.

We believe that the ranges of the later PA terms are also
continuous functions ofz though it is impossible to numeri-
cally verify this for largei since for largez, their ranges are
of the order of 102ND, whereND is the maximum number of
significant figures available in the computation. Thus as the
earlier PA terms have finite ranges atz52, it follows that at
least the earlier terms of PA do exist in the logistic map, if
note the whole series. In fact, the existence of PA in the
logistic map has previously been reported@11#.

Note that the steady decreases ofDr (6) andDr (8) from
their respective maximum with increasingz are consistent
with the earlier observation in Sec. III D that wheni is small
the range ofPi decreases asz increases from a sufficiently
large value.

B. Beginning and endingr values of 6 and 8 cycles

The graphs of r (6,min), r ~6,max!, r (8,min), and
r (8,max) as functions ofz for the power-logistic maps are
shown in Fig. 7, wherer (n,min) andr (n,max) denote, re-
spectively, the minimum and maximum values ofr when the
n cycle exists. This figure shows that all these functions in-
crease monotonically withz, a behavior that is consistent
with the shift of the portion of the chaotic region with small
values ofr in the direction of increasingr asz increases.

As shown in Fig. 7, the smallest values ofr (6,min) and
r (8,min) are both 1, while the smallest value ofz for which
the 8 cycle exists is smaller than that for the 6 cycle. From
this and the monotonic nature of these four functions, we can
deduce that asz decreases, the earlier PA terms will be
pushed in the direction of decreasingr until some of them
cease to exist as they are ‘‘pushed’’ out of the chaotic region.
The last deduction is consistent with the observation in Sec.
III D that asz increases, there is more ‘‘room’’ at the begin-
ning of the chaotic region to accommodate earlier PA terms.

It is convenient to view the above process asz decreases
from 2 instead. Asz decreases,Dr (6) andDr (8) increase
until z reaches about 0.7 and 0.5, respectively, while
r (6,min), r (6,max), r (8,min), and r (8,max) all become
smaller. This increase of the ranges and the earlier appear-
ance of the beginning and ending of both the 6 and 8 cycles
imply that these terms encroach towards the periodic region
asz decreases from 2 to 0.7. In general, other PA terms are
expected to behave similarly. Consequently, asz decreases,
the first PA term will be larger since the earlier terms would
have been ‘‘pushed’’ out of the chaotic region.

C. Relation between PA and period-adding series
in cusp maps

From above, we see that PA, while is an arithmetic pro-
gression with a common difference of 2, exists in the chaotic
region of the power-logistic map for all values ofz in the
range of interest, regardless of whether or not the slope of the
map is continuous everywhere. This is to be contrasted with
the existence of the ‘‘period-adding’’ phenomenon in cusp
maps, which have discontinuous slopes at the cusps@12–14#.
This phenomenon gives rise to a sequence of attracting peri-
odic orbits in the chaotic region, which forms an arithmetic
progression with a common difference of 1 instead.

Thus patternA, which exists in the power-logistic map, is
not identical to the period-adding series in the cusp maps,
since the common difference is 2 in PA, and it does exist in
maps which may or may not have continuous slopes every-
where.

FIG. 6. Graph ofDr (n) againstz. Curves I and II represent
Dr (6) andDr (8), respectively.

FIG. 7. Graphs ofr (6,min), r (6,max),r (8,min), andr (8,max)
vs z. The solid curves in I and II denoter (6,min) andr (8,min),
respectively, while the dashed curves in I and II denoter (6,max)
and r (8,max), respectively.
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V. SUMMARY AND DISCUSSION

The power-logistic map given by Eq.~1! for zP(0,2# has
many interesting properties. Here we shall briefly summarize
some of our main results and give a brief discussion on cer-
tain other aspects.

In the chaotic region of the power-logistic map for all
values ofz in the range of interest, there are some stable
cycles, each distinguished by its smoothly ascending struc-
ture from a negative value ofl to a peak value of 0, with
periods that can be regarded to form an arithmetic progres-
sion. This series is referred to as patternA ~PA!, and it has a
common difference of 2 with the first PA term,P1 either
remaining constant or increasing by 2 asz decreases. The
value ofP1 is larger than that of the stable cycle occurring
after the 2 cycle in the periodic region by 2.

Whenz is small, the PA terms are very prominent com-
pared to other cycles and are therefore easily identifiable. As
z increases, the range occupied by each PA term generally
decreases whenz is large enough; it is therefore more diffi-
cult to identify the PA terms for largez, especially in the
case of the logistic map. In the latter case, the PA terms
occupy very tiny ranges ofr and are not as prominent as
many other stable cycles in the chaotic region: hence the
existence of PA can be easily overlooked here.

Is PA a finite or an infinite series? It is not possible to
answer this question by using numerical methods since the
later PA terms have very tiny ranges and hence cannot be
isolated even if they do exist.

The bifurcation diagrams for the power-logistic map for

different values ofz are related to each other. In particular,
asz increases, the range of the chaotic region decreases, with
the same PA term commencing at a larger value ofr and
occupying a smaller range whenz is sufficiently large. De-
spite the shrinking of the chaotic region asz increases, there
is now more room at the beginning of the chaotic region to
accommodate earlier PA terms.

It is convenient to describe the variations of certain prop-
erties of the bifurcation diagram asz decreases. The range of
the periodic region decreases while that of the chaotic region
increases. Within the latter region, the size of the chaotic
subregion lying between any two consecutive PA terms de-
creases while that of the PA term increases whenz is suffi-
ciently large. We can say that the chaotic region shifts into
the periodic region such that the beginning of any PA win-
dow occurs at a smaller value ofr , and the earlier PA terms
are squeezed out of existence. Hence asz decreases, the
earlier PA terms as well as their period-doubled cycles may
cease to exist: for example, whenz50.6, patternA consists
of the 6,8,10, . . . cycles, whereas whenz has decreased to
0.5, the series does not include the 6 cycle. Further, the de-
crease in size of the chaotic subregion may result in a
gradual disappearance of fine structures such as the series
8,16,24,32,40,. . . , which occurs in the chaotic region be-
tween theP cycle and the first PA term whenz51.
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